
Ensemble learning methods for forecasting solar
power generation depending on meteorological

parameters
Akash Sathish Kumar Pillai, Sarun Sabu, Jesvin Varughese Jose

22300471, 22300623, 22304920
(Deggendorf Institute of Technology)

akash.sathish-kumar-pillai@stud.th-deg.de
sarun.sabu@stud.th-deg.de
jesvin.jose@stud.th-deg.de

Abstract—In this study, we analyze the application of ma-
chine learning techniques to predict solar power output based
on various parameters. We employ three powerful regression
algorithms, Decision Tree Regression, Random Forest Regression,
and Gradient Boosting Regression.

To enhance predictive accuracy, we took advantage of an
ensemble approach by combining the individual models us-
ing Voting Regression. This ensemble model manipulating the
strength of each base model, resulting in a robust and well-
generalized predictor for solar power generation.

Furthermore, we present a user-friendly and interactive web-
based User Interface (UI) that allows users to input relevant
parameters and obtain real-time predictions for solar power
output. The UI facilitates accessibility and usability, serve to both
technical and non-technical users.

Our study aims to demonstrate the effectiveness of ensemble
machine learning models in predicting solar power.

Index Terms—model, ensemble, user interface, prediction

I. INTRODUCTION

As the world struggles with the imperative to shift towards
sustainable energy sources, the prominence of renewable en-
ergy, especially solar power, has become increasingly evident.
To mitigate the environmental impact of fossil fuels and meet
escalating power demands, there is a global push towards
harnessing the potential of renewable resources. The renewable
energy landscape is evolving with projections indicating a
significant increase in the share of electric power generation
from renewable sources.

This paper delves into the realm of solar power generation
and employs the applications of artificial intelligence via
machine learning. In this changing environment, it becomes
imperative to accurately forecast solar power generation. This
paper describes a real-world case study that was carried out to
investigate the impact of artificial intelligence on a solar photo-
voltaic power plant with a capacity of kW. The importance of
these forecasts goes beyond operational effectiveness, instead,
we concentrate on meteorological and environmental factors,
offering a thorough examination of variables associated with
weather and wider environmental effects in relation to solar
power generation. This work aims to develop a reliable solar

power prediction technique that is customized to the distinct
features of the collected data, in light of the increasing number
of solar power installations. Although there are many different
prediction techniques, the study focuses on ensemble machine
learning (EML) algorithms because of their proven success in
developing accuracy. The approach, findings, and implications
of utilizing an ensemble machine learning model for models
such as decision tree regressor, bagging (random forest regres-
sor), and boosting (gradient boosting) for regional solar power
prediction will be covered in detail in the following sections.

The field data was gathered from the Solar Radiation
Resource Assessment (SRRA) center’s open source platform.
It contains a number of factors that have been preprocessed
(such as feature selection and data cleaning) and examined.
In order to estimate solar power output under the influence
of climatic conditions, the processed dataset has been fed
into a number of machine learning models (Table I). As of
right now, it has been determined that when it comes to
prediction accuracy, the EML models outperform the other
traditional regression models. In this work, three EML models
have been selected: voting, bagging, and boosting. The testing
set validates the algorithms’ performance, which reveals a
prediction accuracy of about 80%. Therefore, given a specific
geographic location, the suggested EML algorithms can be
highly helpful in predicting the performance of even large-
scale solar power projects. Additionally, it can be deduced
that the suggested model illustrates the beneficial use of these
models through a user interface that is simple to navigate and
can be utilized for prediction with appropriate identification of
suitable parameters. By combining advanced machine learning
methods with an intuitive user interface, solar power prediction
apps are developed and renewable energy resources are utilized
more effectively.

The work is structured as our proposed research and analysis
technique is explained in Section 3. Section 3.A. goes into
detail on the setup, pre-processing, analysis, and impact of
various meteorological elements on the generation of solar
power as well as the procedure of collecting datasets. In

1

Section 3.C, the different learning strategies employed in this
research are discussed. Section 6 presents an analysis of the
final result.

Sl. no. Parameter
1 Temperature
2 Humidity
3 Precipitation
4 Snow
5 Cloud cover
6 Wind speed and direction
7 Zenith
8 Azimuth

TABLE I
FEATURES

II. LITERATURE REVIEW

D. Chakraborty et al. [1] in this article the authors focuses
on to generalized method which provides insightful informa-
tion for forecasting large-scale solar power plant performance
under a range of meteorological scenarios using Ensemble
Machine Learning models.

Leo et al. [2] in this paper the authors points out the use
of random forests in predictive modeling, key aspects like
he significance of strength and correlation between individual
trees, the convergence of the generalization error, and the
combination of tree predictors. It also proposes directions
for future research, such as combining random features with
boosting and developing theoretical frameworks to compre-
hend the behavior of the model as well as it also offers insights
into how randomness contributes to precise classification and
regression outcomes.

M. Alaraj et al. [3] developed a study which discusses
the urgent necessity to switch from fossil fuels to renewable
energy sources because of the rising expense of crude oil and
environmental concerns, especially solar photovoltaic (SPV)
technology. The paper highlights the difficulty of integrating
solar power on a broad scale into the grid and suggests a
unique machine learning method based on ensemble trees for
precise SPV power forecasting.

A. Natckin et al. [4] proposed that gradient boosting ma-
chines (GBMs), highlighting their adaptability and success in
a range of real-world applications and emphasizes how GBMs
can be tailored to meet specific requirements and how they can
be trained to accommodate a variety of loss functions. The
course focuses a lot of emphasis on the useful applications
of machine learning modeling in addition to exploring the
theoretical foundations of gradient boosting techniques.

Ye Ren et al. [5] developed a thorough evaluation in solar
irradiance and wind speed/power forecasting.The competitive
and cooperative approaches to ensemble forecasting are further
subdivided into cooperative methods based on pre- and post-
processing and competitive methods based on diversity of data
and parameters.

Amarasinghe et al. [6] in this article the authors emphasize
the importance of executing an ensemble model approach

that integrates deep learning approaches for accurate solar
power forecasting across 21 solar photovoltaic installations
located in Germany, in order to meet this difficulty in power
system planning and operation. One of the most important
steps is using a feature selection procedure to identify the
most important meteorological characteristics for solar power
generation.

III. METHODOLOGY

In the process of developing our deep learning system,
we initiated by collecting diverse datasets relevant to our
research objectives. The collected data underwent a thorough
cleaning process, where we addressed missing values, outliers,
and any inconsistencies to ensure the integrity and quality
of our dataset. Subsequently, we employed standardization
techniques to normalize the features, promoting uniformity
and aiding the convergence of machine learning algorithms
during the training phase. Visualization played a pivotal role
in identifying trends and making informed decisions regarding
feature engineering and model selection (Fig. 1.).

The heart of our system lies in the development of machine
learning models. We partitioned our dataset into training and
test sets to facilitate the model training process. Employing
popular machine learning frameworks like bagging and boost-
ing, we trained models to learn from the patterns in the data
and make accurate predictions. Upon achieving satisfactory
model performance, we transitioned to the deployment phase.
An API (Application Programming Interface) provides a seam-
less and standardized interface for interacting with our trained
models. This API allows for efficient integration with various
applications and systems, enhancing the accessibility of our
deep learning capabilities. To provide a user-friendly interface
for end-users, the UI was designed with a focus on simplicity
and flexibility to cater to a wide range of users, from domain
experts to non-technical stakeholders.

This end-to-end methodology ensures the development of
a robust and scalable deep learning system, encompassing
data collection, cleaning, standardization, visualization, model
creation, API development, and UI design, all contributing to
a comprehensive solution for our research objectives.

A. Data Collection

Data collection is one of the major steps involved in every
machine-learning project. In this case study, we collected data
from free and open web sources. In addition to that, we clearly
outlined the goals and objectives of the data collected and
to understand what insights or knowledge the collected data
aims. Effective data collection is a fundamental step in the
research or decision-making process, laying the groundwork
for subsequent data analysis, interpretation, and application.

B. Data Preprocessing

Data preprocessing is a pivotal step in the data science
pipeline that involves cleaning, transforming, and organizing
raw data into a format suitable for analysis or model training.
The goal is to enhance the quality of the data, address any

2

Fig. 1. Methodology Flow Chart

inconsistencies or errors, and prepare it for meaningful insights
or machine learning tasks. Initially handling missing data and
dealing with outliers to prevent them from disproportionately
influencing analysis or model training. Followed by data
standardization for scaling numerical features to a standard
range, ensuring uniformity and aiding the convergence of
machine learning algorithms.

Exploratory Data Analysis (EDA) utilizes visualization li-
braries such as Matplotlib and Seaborn to explore data distri-
butions, patterns, and relationships. Identify potential features
and relationships that may be relevant to the research question.
We conducted a thorough analysis of correlation among inde-
pendent variables using a heatmap (Fig. 2.) as well as assessed
the multicollinearity which, is not a significant concern for our
models as we employ bagging and boosting techniques, which
are known to be robust to correlated features.

C. Model Creation and Exploration

Initially, the dataset is divided into two sets as an 80%
training set and a 20% testing set. This division allows for
the model to be trained on the larger portion of the data.
The training set is utilized to teach the model the underlying
patterns and relationships within the data, while the testing set
serves as a benchmark to assess how well the model gener-
alizes to new data. This train-test split is a common practice
in machine learning to ensure that the model’s performance is
robust and applicable beyond the data it was trained on. Model
creation focuses on designing and training a machine learning
model while, model exploration is dedicated to understanding
and analyzing the trained model’s behavior, strengths, and
weaknesses. Both phases are crucial for developing reliable

Fig. 2. Correlation Plot

and effective machine learning solutions. Model exploration
informs decisions about model deployment, improvements,
and potential iterations based on a deeper understanding of
how the model interacts with the data. In the realm of model
creation, we focus on the prepared dataset, guided by the
insights gleaned from captivating visualizations. Referring to
the pair plot (Fig. 3.), it becomes evident that the majority of
data points overlap, rendering linear and logistic models are
unsuitable. These models rely on linear boundaries, and in this
scenario, the dense overlap among data points impedes their
effectiveness in distinguishing between classes. Alternative
models with non-linear decision boundaries may be more
appropriate for capturing the complex relationships present in
the data.

By thoroughly exploring the model, we were able to
make informed decisions regarding model deployment, im-
provements, and further iterations. This exploration process
contributes to building trust in the model’s predictions and
enhances its applicability in real-world scenarios.

• Decision Tree Regressor
The Decision Tree Regressor is a machine learning algo-
rithm designed for regression tasks, where the goal is
to predict a continuous target variable based on input
features. This algorithm constructs a tree-like structure
by recursively splitting the input space, creating decision
nodes that guide predictions to leaf nodes. Each leaf node
corresponds to a specific predicted value for the target
variable. In equation (1), it represents entropy for the de-
cision tree by which the nodes are executed in a decision
tree. H(t) is the entropy at node t, c is the number of
classes (distinct target values), and p(i/t) is the proportion
of samples in class i at node t. The entropy is calculated
for each node during the tree-building process. The de-

3

Fig. 3. pairplot of parameters in dataset

cision tree algorithm aims to maximize information gain
when selecting the best feature to split on. The algorithm
is particularly advantageous for its interpretability, as the
resulting tree can be easily visualized. Key parameters,
such as maximum depth and minimum samples per split,
allow for control over the model’s complexity.

H(t) = −
c∑

i=1

p(i|t) log2(p(i|t)) (1)

• Random Forest Regression
Random Forest Regression is a powerful ensemble learn-
ing algorithm that incorporates the principles of bagging
(Bootstrap Aggregating) [3] to enhance predictive ac-
curacy. Since the random forest algorithm constructs a
collection of decision trees (the decision tree regressor
aids in reducing the execution time for random forest
regressor), where each tree is trained on a different
subset of the data, and their predictions are aggregated
to form a more robust and accurate model. In equation
(2), Q(t) denotes the impurity improvement attained by
splitting, H(t) is the impurity measure at node t, H(left)
and H(right) are the impurity measures of both the left
and right child nodes, Nt is the total number of samples
at node t, and Nleft and Nright are the number of samples
in the left and right child nodes, respectively.

Q(t) = H(t)−
(
Nleft

Nt
H(left) +

Nright

Nt
H(right)

)
(2)

• Gradient Boosting
Boosting aims to minimize the expected loss, the loss
function quantifies the penalty for the difference be-
tween the predicted values and the true labels. Gra-
dient Boosting is an ensemble learning technique that
builds a predictive model by iteratively combining weak
learners, often decision trees, to correct errors made by

the existing ensemble [5]. Sequentially added models
focus on instances with prediction mistakes, optimizing
the overall model for both bias and variance. The al-
gorithm utilizes gradient descent to minimize a chosen
loss function, adjusting the parameters of each weak
learner to enhance predictive accuracy. Gradient Boosting
Machines offer various optimizations, making Gradient
Boosting suitable for diverse data types and tasks. While
known for high predictive accuracy, its computational
intensity and the need for careful hyperparameter tuning
are considerations. Overall, Gradient Boosting stands out
for its robustness and flexibility, making it a valuable tool
in machine learning applications.

F ∗(x) = argminE(y, x)ψ(y, F (x)) (3)

The function F ∗(x) establishes a mapping from the input
variable x to the output variable y. By minimizing ψ
(y, F(x)) (the joint distribution of (x,y), the expected
loss over this mapping is intended to be as small as
possible. The minimization function is represented in
equation (3). Building new weaker base learners with
the highest correlation to the previously mentioned loss
function’s negative gradient is the key concept behind this
technique. These newly created models or base learners,
are sequentially combined to form the final ensemble.
Each learner is trained by evaluating the error or loss in
the ensemble.
Gradient boosting machines are recognized for their
configurational flexibility. Among various available loss
functions, one can be selected to effectively train the
ensemble, offering versatility in adapting to diverse sce-
narios.

• Voting Regressor
The Voting Regressor in scikit-learn is used to ensemble
the models used, by which it combines regression models
to enhance predictive accuracy. Operating on the principle
of aggregating predictions from diverse models, it offers
two voting strategies ’hard’ for majority voting and ’soft’
for averaging predicted probabilities. Creating a Voting
Regressor involves specifying base regression models and
the chosen voting strategy. The Voting Regressor aggre-
gates predictions from decision trees, random forests,
and gradient boosting, offering a diverse set of mod-
els to improve overall predictive performance. Decision
trees provide simplicity and interpretability, while random
forests bring robustness and reduce overfitting. Gradient
boosting, on the other hand, sequentially corrects errors
and enhances predictive accuracy. By combining these
models in a Voting Regressor, it could benefit from their
complementary strengths, creating an ensemble that is
resilient, accurate, and adaptable to different aspects of
the data, its effectiveness relies on the diversity and
independence of the underlying models, with careful con-
sideration of hyperparameter tuning for the base models.
Fine-tuning the hyperparameters of each base model and

4

the voting strategy is essential for achieving optimal
results.

F (xi) =

∑M
m=1 wm · fm(xi)∑M

m=1 wm

(4)

If ’soft’ voting is chosen, the final prediction for xi is the
weighted average of the predictions from all base models.
The weights are typically proportional to the performance
or confidence of each base model. In equation (4) the
mathematical representation of xi is represented as F(xi)
where, F(xi) is the final prediction, fm(xi) is the predic-
tion of m-th base model and wm is the weight assigned
to the model. Whereas, in the case of ’hard’ voting, the
final prediction is opted with the one with the majority
of votes.

D. Application Programming Interface

An API, or application programming interface, is a col-
lection of protocols and tools for creating software applica-
tions that facilitate communication between different software
applications. A well-designed API is crucial for providing a
positive user experience and ensuring that users can easily
navigate and interact with the application. It allows different
software systems to communicate with each other, enabling
us to seamless integration and data exchange. API defines
the methods and data formats that applications can use to
request and exchange information, providing a standardized
way to interact with services or functionalities offered by other
software components.

In this project, we have developed a Task Management Sys-
tem using Flask, a lightweight and extensible web framework
for Python, and PyCharm, an integrated development environ-
ment (IDE) specifically designed for Python development. The
goal of the project was to create a simple and efficient API
for managing tasks, including functionalities for task creation,
retrieval, and deletion. We have transformed our trained model
into a pickel file which we utilized in Flask’s simple and
intuitive design to create API endpoints for managing tasks.
Flask routes were defined for handling actions such as calling
the model in the back end and retrieving data to the front
end. Flask utilizes the WSGI (Web Server Gateway Interface)
toolkit Werkzeug (Table II) to deal with the more complex
parts of web development. It provides utilities for routing,
debugging, and serving as the foundation for building web
applications. We have facilitated the serialization of data into
commonly used formats like JSON for data interchange in
APIs.Flask provides a request object that simplifies the ex-
traction of data from incoming HTTP requests. By leveraging
the features of Flask and adhering to principles, we were able
to create scalable, maintainable, and well-documented APIs.
Flask’s simplicity and extensibility, combined with its vibrant
ecosystem, make it a powerful tool for building our web-
based applications and services. In the context of our project,
Flask serves as an excellent foundation for developing a Task
Management System API with efficiency and ease.

E. User Interface

In this comprehensive project, we have not only developed a
robust task management system API using Flask but have also
seamlessly integrated a user-friendly HTML User Interface
for an enhanced user experience. The interface comprises
all the elements that users interact with on a screen, such
as buttons, icons, photos, text, input fields, and more. The
project showcases the synergy between Flask’s back-end ca-
pabilities and the intuitiveness of HTML for front-end design.
We leveraged Flask’s Jinja2 template engine (Table II) to
dynamically generate HTML pages based on back-end data.
The UI components include an interactive page for feeding
input parameters, which results in the prediction of solar power
generation (Fig. 4.).

Fig. 4. User Interface

In addition to that, we have also implemented tooltips that
provide explanations for each input parameter, ensuring that
users can easily understand the purpose and function of each
field. This added feature enhances the user experience by
making the interface more informative and accessible to all
users (Fig. 5.).

Fig. 5. Tooltip

IV. SOFTWARE REQUIREMENTS

To develop a well-rounded machine learning system and
seamlessly integrate the entire product, our team has lever-
aged a diverse set of software facilities. Beginning with the
foundation of our project, we employed versatile programming

5

tools for building essential components. We ensured smooth
collaboration and version control through the adoption of
Pycharm, providing a rugged platform for code management
and collaboration. For the computational power required in
training and running our models, we incorporated anaconda
navigator tools, harnessing the parallel processing capabilities
of NVIDIA GPUs. This strategic integration optimizes the
efficiency of our machine learning model, enhancing its per-
formance and expediting training processes. In tandem with
these tools, we have also utilized popular machine learning
frameworks like Flask, empowering our team to develop
an API(Application programming interface). Additionally, the
project is deployed in a user-friendly interface which can
enhance the practicality and adoption of our machine learning
system.

A. Anaconda Navigator

Anaconda Navigator is designed to simplify the manage-
ment and deployment of data science and machine learning
tools conveniently to navigate and access various components,
such as Jupyter Notebooks, Spyder IDE, and other data science
applications. In which our team opted for the Jupyter Note-
book, which is an open source, an interactive web application
for machine learning tasks where users can create and combine
real time codes. This flexibility makes it an ideal environment
for exploratory data analysis, prototyping, and collaborative
research as well as it operates on a cell-based structure,
where each cell can contain code, markdown text, or visual
outputs. One of its notable features is its seamless integration
with Anaconda’s package management system, allowing users
to effortlessly install, update, and manage Python packages
and dependencies. The navigator’s intuitive design caters to
both beginners and experienced data scientists, facilitating a
smooth workflow for tasks ranging from project development
to the execution of complex machine learning models. With
its emphasis on ease of use and comprehensive functionality,
Anaconda Navigator significantly contributes to the efficiency
and productivity of data science and deep learning projects.

B. PyCharm

PyCharm is a powerful integrated development environment
(IDE) specifically tailored for Python programming. PyCharm
supports the creation of virtual environments, isolating project
dependencies for better manageability. It provides a smart
code editor with advanced code completion, code analysis,
and error highlighting, enabling developers to write clean
and error-free code. The integrated version control system
facilitates collaboration and code management within a team.
In our study, we have used PyCharm’s environment, robust
debugging tools, unit testing support, and built-in terminal to
contribute to bridging the back end and the front end.

C. Python libraries required

For the preparation of the model, we strategically em-
ployed key Python libraries like Pandas which facilitated data
collection and pre-processing, while Matplotlib empowered

insightful exploratory data analysis, NumPy handled data stan-
dardization, scikit-learn powered our machine learning models,
and libraries including versions (Table II). This amalgamation
of Python libraries ensured a streamlined and efficient end-to-
end development process.

Sl. no. Library Version
1 Flask 3.0.0
2 Flask-Cors 4.0.0
3 Flask-MonitoringDashboard 3.2.2
4 numpy 1.26.2
5 pandas 2.1.4
6 scikit-learn 1.3.2
7 kneed 0.8.5
8 xgboost 2.0.2
9 matplotlib 3.8.2
10 Jinja2 3.1.2
11 Werkzeug 3.0.1
12 itsdangerous 2.1.2
13 certifi 2023.11.17
14 Markupsafe 2.1.3
15 gunicorn 21.2.0

TABLE II
LIBRARIES AND VERSIONS

V. HANDELING UI

Users can access the graphical user interface through the de-
ployment server link (Fig. 6.) generated in the Python environ-
ment, which offers a smooth entry point to a complex system
while ensuring a comprehensive and user-friendly experience.
The interface is designed to include various meteorological
parameters (Table I), with each parameter represented by
dedicated input boxes, allowing users to smoothly input the
gathered data. The UI is created in a way that both technical
and non-technical users can easily handle the system.

In addition to the meteorological inputs, a dedicated input
value box is provided where users can select which prediction
models they wish to use. The available models include De-
cision Tree, Random Forest Regression, Gradient Boosting,
and an Ensemble Learning model (Fig. 7.). After completing
the data input and selecting the desired models, the user
simply needs to click the ”Start Predicting” button. This action
initiates the interface to execute the chosen algorithms and
provides the prediction of solar power generation output in
kilowatts (kW). With this predictive capability and model
selection feature, the interface becomes an even more powerful
tool for analyzing and forecasting electricity generation based
on meteorological data.

Fig. 6. Deployement Link

6

Fig. 7. Handeling UI

VI. RESULT AND ANALYSIS

We conducted a comprehensive analysis of model perfor-
mance through the examination of residual plots (Fig. 8.)
and scatter plots (Fig. 9.) comparing predicted and actual
values. Residual analysis allows us to assess the goodness of
fit by inspecting the distribution of the differences between
predicted and actual values. The scatter plots visually illustrate
the model’s ability to capture patterns and trends in the
data. These diagnostic tools provide valuable insights into the
strengths and potential areas for improvement in our predictive
model. The close examination of residuals aids in verifying
assumptions and ensuring the robustness of our modeling
approach.

Fig. 8. Residual Plot

VII. CONCLUSION

In conclusion, the study focuses at how to anticipate solar
power generation using ensemble machine learning (EML)
techniques in order to increase the accuracy and robustness
of solar power generation forecasts. As the demand for sus-
tainable energy solutions continues to rise, the insights and

Fig. 9. Scattered Plot

tools generated through this project contribute to the ongoing
efforts in optimizing solar power generation forecasting, in
accordance with the meteorological conditions.

Furthermore, seamless interaction between the ensemble
model and the user interface was made possible by the Flask-
based user-friendly API implementation. The implementation
of the model within a graphical user interface not only enables
user involvement but also improves accessibility for those who
wish to easily anticipate the generation of solar electricity. The
model’s effective implementation in a user interface highlights
the created solution’s practical applicability and provides con-
sumers in the renewable energy industry and beyond with an
approachable tool.

Additionally, it proposes potential extensions to newly con-
structed and existing solar power plants, as well as avenues
for future research to improve the performance of machine
learning algorithms and create better prediction algorithms.

ACKNOWLEDGMENT

The authors are thankful to everyone who provided sig-
nificant assistance and contributions while the paper was
being developed. We extend our gratitude to Professor Sunil
Survaiya for their guidance and mentorship, which greatly
enriched the quality and depth of our research. Special thanks
to the Deggendorf Institute of Technology for their support
and provision of resources. This work has been made possible
through their commitment to advancing research in machine
learning prediction.

REFERENCES

[1] D. Chakraborty, J. Mondal, H. B. Barua, A. Bhattacharjee Computational
solar energy – Ensemble learning methods for prediction of solar
power generation based on meteorological parameters in Eastern India,
https://doi.org/10.1016/j.ref.2023.01.006

[2] Leo. Breiman, Random forests, Mach. Learn. 45 (1) (2001) 5–32,
doi.org/10.1023/A:1010933404324

[3] M. Alaraj, A. Kumar, I. Alsaidan, M. Rizwan, M. Jamil, Energy produc-
tion forecasting from solar photovoltaic plants based on meteorological
parameters for qassim region, saudi arabia, IEEE Access 9 (2021)
83241–83251, https://doi.org/10.1109/ACCESS.2021.3087345

7

[4] A. Natekin, A. Knoll, Gradient boosting machines, a tutorial, Front.
Neurorobot. 7 (2013) 21, https://doi.org/10.3389/fnbot.2013.00021

[5] Ye Ren and P.N. Sugathan and N. Srikanth, Ensemble methods
for wind and solar power forecasting-A state of the art review,
doi.org/10.1016/j.rser.2015.04.081

[6] P. A. G. M. Amarasinghe, N.S. Abeygunawardana, T.N. Jayasekara,
E.A.J.P. Edirisinghe, S.K. Abeygunawardane, Ensemble models for solar
power forecasting—a weather classification approach, doi: 10.3934/en-
ergy.2020.2.252

Fig. 10. Author Contribution

8

